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ABSTRACT

A procedure for performing sensitivity analyses of data vis-a-vis

» the multivariate error model, with or without structural variables, is

proposed. It is based on an estimation procedure, a generalization of
maximum likelihooda, which is indexed on a user-specified value c¢. The
sensitivity analysis proceeds in the following way: the parameters of
a set of data presumed to follow a multivariate normalberror model are
estimated via maximum likelihood (c=0). The parameters are next esti-
mated for an index N > 0., The sensitivity in parameter estimates is
noted. The parameters are next estimated for a user-specified index

c2 > < > 0 and the sensitivity of the parameter estimates f:o the
change in c is again noted. This process may have one or more values
of ¢ > 0. If the parameter estimates are sensitive functions of c, the
model and the data are not mutually consistent and both require further
detailed study. The items of data which are most contributory to this
sensitivity are identified by an examination of observational weights
which are a byproduct of the analysis. If the parameters and observa-
tional weights are non-sensitive to changes in the index c, then c¢ne can
generally be confident of the internal consistency of the data and the
error model. Pixed values of the index ¢ provide robust estimation
procedures for model parameters. Asymptotic relative efficiencies and
influence functions are provided for fixed values of c. The results of

a small Monte Carlo study suggc-ﬁ that the asymptotic properties of the

estimators are rapidly attained. Several illustrations are given.
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1. Introduction

A number of robust procedures for the analysis of p-dimensional
Gaussian (normal) data have been proposed by Gnanadesikan and
Kettenring (1972), Devlin, Gnanadesikan, and Kettenring (1975), Maronna
(1976), Huber (1977), Mosteller and Tukey (1977), Devlin, Gnanadesikan,
and Kettenring (1981). A number of numerical and statistical character-
istics of these procedures have been evaluated in Devlin et al. (1981).
Summaries and further discussion of multivariate robust procedures are
given in Gnanadesikan (1977), Barnett and Lewis (1978), and Huber (198l).
Degpite the impressive range of work in the problem of robustness and
allied topics, there is still a need for a unified approach to the
subject, preferably one based on an objective function.

We propose a procedure for the analysis of multivariate Gaussian
data which is based on a generalization of maxinmm likelihood which has
recently been considered in the univariate .context by Paulson. Presser,
and Nicklin (1982). The estimation procedure depends on a user-specifi.d
index c which may be varied to determine (a), the response of the
parameter estimates to variation in this index, and (b), the response
of observational weights associated with each observation to variation
in this index. The response surface generated permits a sensitivity
analysis which is useful in assessing the mutual consistency of the model
and ths data considered as a single entity. If the parameter estimates
and final cbservational weights are not sensitive to variation in the
user-specified index, then it is highly likely that the data and the
model are internally consistsnt. If the parameter estimates and final

waights are sensitive to variation in the user-specified index, then




it is likely that the data and the model are not internally consistent
for any of a variety of reasons. Thus the procedure we are proposing can
be quite useful in the 1dentif.icat:ion of potential outliers.

Our procedure produces robust estimators of the mean vector and the
covariance matrix by simply taking a fixed value of the user~specified
index ¢. Asymptotic properties are given for several values of the
user-specified constant and for several values of the dimension p. The
procedure is easy to use ard computationally attractive. Several examples

and illustrations are provided.
2. The Simultaneous Estimation Procedure

We suppose that Xy g0 - .es X, constitutes z random sample from,

tentatively, a multivariate Gaussian density
fislu, D = |27 expl-k(x-w)T piz-w} (2.1)

where U is a pXl vector of location parameters, and D = (djk) ii a pxp
positive definite matrix of covariances. The estimators for | and D, which

we shall term self-critical, are determined from maximization of _

. o1 n’f"(zilu,m lz | o
¢ sal [Qypicr1%/11¥S)

Q(u,Ric) = J £ (5| u.0) g
R
P

= {(1+a)? (2m°P|p|°}Y . (2.3)
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It is easily shown that

3 n
. n : lim L =L = Z log £ (§ | Y Q) '
5 c0 ¢ 0 i=1 i

the likelihood function. Upon differentiation of (2.2) with respect to u

and setting the resulting expressions to 0, we find that the

and D,

estimators for Y and D are determined from the simultaneous zeros of

n dlog £, .

I £° {ase Em = - algzg}-g , (2.4)
i=1

n dlog £,

I £, (o) —— ﬁ_l—gggbq , (2.5)

i=1

where we have suppressed the arguments of the density and Q and written

£, for £{x |1D) and Q for Q(y,Dsc). Equations (2.4) and (2.5) may be

rearranged so that the estimators for y and D, say ﬁ and ﬁ, satisfy the

At mmpr ey

implicit equations

n -
i=z-1 % Vie
— (2.6)
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The weighting in (2.6) and (2.7) reflects a self-weighting, namely by the
density itself. Thus the assumed density and the data interact in pro-
ducing parameter estimators, and for this reason we have called the
resulting estimators self-critical.

The system (2.6)-2.7) defines a family of estimators indexed on the
user-specified constant c¢. We will presently address the question of
how ¢ should be chosen for practical applications. It is recommended
that the estimators be computed numerically by a fixed point algo-
rithm with initial triél solutions the usual maximum likelihood
estimators of U and D. Since the function 20 is concave (Rao, 1965,
PP. 447-449), kc will also be concave for at least a neighborhood of ¢ = 0
and will, for this neighborhood, always have a unique solution. The
system (2.6)-(2.8) need not always have a unique solution in general
but we have not encountered any difficulties with the estimation procedure
in a wide variety of experiences with real and simulated data so long
as the trial solution for c > 0 was the maximum likelihood (c=0) estimators
and c was not too far from zero. As ¢ moves further and further away from
zero, the procedure may break down numerically or provide multiple solutions.

It is easily verified that the expectations of the left-hand sides of
(2.4) and (2.5) are the zero vector and matrix respectively. In fact, the
procedure was developed to guarantee just this; see Paulson et al. (1982) for

further discussion.
3. Some Examples

A few examples at this point will be useful in showing the potential

of the family of estimators (2.6)-(2.8) in the analysis of multivariate data.
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Example 3.1

Consider the bivariate data of Figure 1 (Anderson (1958)). The
central cloud of points represents the original data to which a single
outlier has been added and rotated through 360° in 9° increments starting
at the point labeled 1. Table 1 presents the results of the tradi-
tional maximum likelihood analysis applied to the original data plus
the single outlier contrasted with the self-critical analysis with ¢ =
.3. The effect of the single outlier on the estimate of the means ul
and u2 is slight for the ¢ = .3 case. The effect of the single outlier
on the estimates of the variances Gi and 0; is substantial for ¢ = 0
but is less than 23% for ¢ = .3 regardless of where the outlier is
placed. The effect on the estimate of correlation for ¢ = 0 is dramatic,
the estimate varying from .80 to .27. However, for ¢ = .30 the esti-
mate of correlation varies only from .746 and .800. In this case,
graphical methods make it easy to see what is happening, but when the
dimensionality p increases, it becomes increasingly difficult to iso-
late problems, or more importantly, the elements of the data which just
might lead to the most interesting structure in the data. The automatic
weighting of the observations via the self-critical procedure provides
2 means at higher dimensions for indicating unusual observations or
structure. The weight v _3 for the outlying observations is the lowest

3
among all the weights.

Example 3.2
The extent to which the family of estimators (2.6)-(2.8) can be

useful in identifying structure is now considered. Each of the 25 3-§actor

observations obtained by Billmeyer and Rich (1978) from color matching on
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Percent Change of Estimators for Location, Dispersion and
Orientation Under Rotation of Outlier Through 9 Degree Increments

TABLE 1

Parameter c =0 ¢ = .3
ul +1% ¥0.3%
My *1% $0.3%
Gi -4% to +50% 0% to +23%
cg -4% to +88% 0% to +21%
o] -63% to +9% -2% to +6%
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a MacAdam Colorimeter are shown in Table 2. The three variables are
the percentages of red, blue, and green in the final adjustment by the
observer in his attempt to match a given color. Analysis of similar
data, obtained from 22 sessions with a single observer, led Brown et al.
(1956) to conclude that the data were trivariate normal. [The data are
all ostensibly from a single trivariate population.] However, normal
probability plots of each variable would show that observations 16, 19,
20, 21, 22, and 25 seem the most unusual in one or more dimensions and
an Andrews~-type plot corroborates this.

We applied equations (2.6)-(2.8) to these data, starting first at
¢ = 0 and then progressively increasing ¢ through .1, .3, to .5. Several
observations are immediately highlighted by a dramatic change in the
final weights jS. Several campo?ents of the covariance matrix also
show marked sensitivity to the variation in c¢. As c¢ increases to .5,

12 of the weights are reduced to low values. The results for c = .5

are also presented in Table 2. The low weights w 5= Gj'.s/zsj'.s

in Table 2 pinpoint observations 14-25 for further study. This analysis
led to careful reexamination of the original data cards which showed
that the first 13 observations were those of a single observer, A say,
while the last 12 were those of 12 different cbservers.

Figures 2a, b, and c show all two-dimensional scatter plots of this
sample with observer A's cbservations labeled by A's and all other ob-
servations labeled by B's. Greek letters represent various combinations

of observations which are too close to differentiate in a plot of this

scale. For example, € represents 2 A observations and 1 B observation.




TABLE 2

Sensitivity Analysis of Trivariate Data

i c=,125 c=,3 c=.5
P;i?t X X X3 Y5125 Y5,.3 ;,.5
1 86.07  58.27  30.72 .051 .064 0.102
2 83.45 56.50  29.45 .053 .077 0.115
3 82.07 55.43  28.71 .053 . .075 0.097
4 83.58 56.32  28.85 .049 .060 0.043
5 82.95  56.21  30.12 .050 .065 0.053
6 83.62 56.38  29.51 .048 .059 0.086
7 86.25  58.39  30.92 ©.050 .063 0.092
8 84.79  57.62  30.15 .047 .046 0.050
9 82.87  55.99  29.87 .050 © .065 0.064
10 79.74  53.89  27.70 .053 .055 0.036
11 81.84  55.26  29.10 .051 .065 0.091
12 84.10 57.08  30.08 .049 .061 0.085
13 86.24  58.34  30.51 .051 .061 0.087 ]
14 80.55 54.32 26.23: .051 .057 . 0.2(-4)
15 81.08  54.54  25.32 .046  .036 0.2(-8)
4 16 101.2 70.38 - 33.97 .1(-4) -1(-18) 0.6(-41)
: 17 84.92 57.75  28.08 033 - .ou 0.3(-6)
; 18 83.78  56.52  26.49 .044 .030 0.1(-8)
19 60.54  40.34  20.06 .020 .7(~8) . 0.8(-14)
20 62.33  41.38  19.11 .024 .2(~6) 0.2(-13)
21 72.09 48.46 22.50 .042 .004 0.2(-8)
22 83.38 58.98 32.66 .5(=7) .8(=23) 0.2(=39)
23 81.45  54.53  23.78 .030 .007 0.6(-18)
24 78.89  53.37  26.21 .048 .039 0.2(~3) :

25 92.50 61.76 29.02 .007 7 .3(=5) 0.1(-16)
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We observe that the observations of A are tightly grouped while the
remainder are more generally scattered. Thus the self-critical weights
were able to separate the observations by a single observer from those
of other origins, a feat which the eye would be hard-pressed to match
without the aid of the separate labels as given on the scatter plots.
Indeed, if the observations were not labeled according to their genesis,
one would be tempted to pick out the B's lying at the extremes as being
potential problem points and consequently miss the relevant structure
entirely. This ability to cluster is also implied by the form of the

influence functions which we present in a later section.
4. Some Asymptotics

The estimators ﬁ'and § defined by (2.4)-(2.8) are M-estimators for
location and the covariance matrix by virtue of (2.4) and (2.5). Further-
more, if thebobservations x are transformed according to y; = 8 + Q;i,
then gy =a + QQ and ﬁy = Q@QT. The estimator § is positive definite
with probability one as soon as n > p. However, some numerical diffi-~
culties may surface if sufficiently many of the final weights Gic are
approximately zero so that there are fewer than p Gic which are larger than
zero. In this latter case § wil® be algorithmically singular.

Standard arguments may be used to show that the estimators ji and ¢
defined as the consistent zeros of (2.4) and (2.5) are asymptotically

Gaussian.

Define

{o]
. 1if (%, [u-D) - lt (4.1)
cj c Q[Q(H'Q,c)]c/(1+c)

s
|
,%



Then tha jth score function is —ag'i and E(—sgi = 0. The self-
critical estimators (ﬁ,ﬁ) are asymptotically Gaussian with mean Q

and variance-covariance matrix

-1 1

Co = By IoHy (4.2)

where the 6,0' element of H H, and Eo are respectively

2
3 % 3%
Hooer = (aeae-) (aaae-) - W

™ Zoper™ E (’Z&';_) ’“(‘3‘61'561) (4.4

for any j = 1,2,...,n and 9,9' ranges over "1'“2""'“9 and 4

11’ 42’

ceesd, ,d ,...dzp,...,dpp. The expressions: (4.2)-(4.4) are evaluated at

1p” "22
the (unknown) true values of y and D, o' and 90' When ¢ = 0 in (4.2)-
(4.4) the expressions are evaluated by a limiting argument and all reduce
to the usual maximum likelihood expressions.
The covariance matrix C, may be ‘written as
A o

Co = (4.5)
0 B

vhere A is the pxp covariance matrix for the estimator ﬁand B is the

4p (p+1)xhp (p+1) covariance matrix for the estimator D. The off-diagonal

blocks of 0 indicate that the estimators ﬁ: and § are asymtotically inde-

pendent. The matrix A may be easily evaluated at the multivariate normal
distribution and is given by “

A = ()Pt (140)1P*2)) (4.6)

with elements ‘ij = cov(ﬁiyf-lj). The form of B is considerably more

complex and we evaluate it only for particular cases.




We now give thne general form for the matrix P at the multivariate

normal distribution with mean vector Q, covariance matrix I. The

particular variances and covariances will be indicated by the subscripts

used. We have

3c? + 4c+2) (+1)P 2 (2c41) PO £ a1, ... ps

Ba2 = (c+1)p+4(2c+1)":(p+4) . for 3 ,l k;
* 2 2 =% (p+4) @.7)
Bés éik = c (c+1)p+ (2c+l) pt , for 3 # k;
33 3
B~ o =0 , for all other cases.
9 5%z

Let us consider now the vector of estimators of covariances

d)17 9320 95-
the matrix B of (4.5) is given by (4.2) with

At the bivariate standard normal with correlation p,

3c3+ace2 ~2p (3c2+4c+2) ?+20% (c+1) 2 ]
o2 2,22 2
o §0 =K, =20(3c +4c+2) 4(c+l) “+4p" (2 +2c+1) =-2p(3c“+4c+2) | (4.9)
c2+202(c+1)2 -20(3c2+4c+2) 3c2+4c+2

=-c(_~ho-2 =2 - -c= -
where K = &(2m ~°|p (c+1)™* and K, = k(2m) "2%|p| ™% 2 (3041)"3




The general form of (4.8) and (4.9) is quite cohplicated and is not given

here. It can be approximated in practice from the asymptotic results,

namely for (4.2)-(4.4) evaluated at y, V.

Table 3 provides the asymptotic efficiencies of the self-critical

estimators (c>0) relative to maximum likelihood estimators (c=0) for the

A

estimators ﬁi' and dij for selected values of the constant c. For fixed c,

there is a decrease in the asymptotic relative efficiency for the estimator

6 as the correlation P increases. The decrease becomes more pronounced

for larger values of c. We will see in the sequel that the relative

efficiencies of the self-critical estimators approach their asymptotic

relative efficiencies rapidly. For samples as small as n = 20, the rela-~

tive efficiencies are about equal to those given in Table 3.

Figures 3a, b, c provide the asymptotic relative efficiences of the

self-critical estimators ﬁi, aii, 8 as a function of ¢ and dimensionality

p when sampling is assumed to be from the p-variate circular normal dis-

tribution. For fixed c we see that the efficiency decreases as p increases

and that efficiency decreases as c increases. For a given value of c,

variance and correlation estimators are less efficient than those of

location. It should be emphasized that these figures pertain to the

The efficiencies for

p-dimensional normal with covariance matrix I only.

covariance estimators will he somewhat lower in the general case as is

indicated in Table 3. Maronna (1976) reports asymptotic relative effi-

ciencies for the multivariate version of Huber's proposal 2 at the unit

spherical normal for Winsorization proportions q = .2, .3, .5, 1.0.

It is interesting that, for fixed q, the efficiencies increase with

increasing dimensionality.




O X9pur 8yl jJO UOTIOUNJ ¥ Se UCTINGTIISTA TPWION PICPURIS SIRTIRATY Oy3 103
SIOJRWTIST TESTITID-FIOS Y3 JO (V) Aoueyorija saryersy oryojduisy

£ 2Iq=1




17

ﬂ: 193eWTISO UOTIEOOT TROTITIV-ITOS SWI 30 Kou9¥0¥33d eayIvIay o1303dmiey

v

o 4 ol 9
v

tclﬂl ¥ ’ 7 L} L] LJ

!
™7

i
—

050

‘eg aandyg

080




18

m 93eWT3ISd UOTILTS1I0D TeDTITIO
-379s ay3y Jo AdouardI3IIF SATIRTIY OT303duisy

11

p S3ewrlse @ouvyIea
TedT3ITI0-3198 SUI JO AOUSTOTIFA SATIRTSY OF3ordmhsy

o ! ol s » 2! o - ¥ ol s » 8!

d SR v v L} A v v ¥ L t R v v v L] v A v L LA

06029 41029 05029 020
o -
4000 Ps

€209 1099 §20=)
<1080

$21039 ~— s2102d

0029 400y 0029 — .T:
Juy v
*o¢ sanBya -qc oan8¥d




5. Influence Functions

m influsnce function is the most important determinant of qual-
itative robustnéas since many other robustness characteristics of an
estimator may be derived f:dn it. The influence function characterizes
the (asymptotic) response of an estimator to an ﬁditiml observation

as a function of where the observation falls. The shape of the influ-
’ ' oL

ence function is determined pi:imrily by the score function C,
for 9_ = u or D. In order to guarantee that single (or.mltiple) observa- '
tions do not exert an excessive influence on the response of the esti-
mator to single cbservations, we require that the influence function be
bounded. It is also advantageou#, in our opinion, if the- influence |
functions are re-descending to zero. |

The influence function for i and D are both bounded and re-descending

to zero for ¢ > 0. Let zcx denote the function when argument x, of (4.1)

x 3
is replaced by the non-random vector x. The influence function for fi
at the p-dimensional normal distribution with paramsters U and D is

given by

2 =1
9 '!'c ‘ Va.!.c

IC X8 (UD) | = - '-—l
» (ﬁ,zﬂph) E it

= 140 P ) expi- £ 0" v ap

for any J = 1,2,...,n. This influsnce function is illustraced in
Pigures 4a and b where we exhibit contours of the first componeat

of the vector (S.1) with c = & and © = & respectively at the

standard bivariste normal distribution with sefo correlatism.

These figures and other figures not given hers indicate that to choose &
greater desres of robustness we chooss a largsr valus of o. The contour
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for the first component of the self-critical estimator Q for the standard
bivariate normal with p = .9 and ¢ = & is shown in Figure 5. The nearly
elliptical contours have the line of perfect positive correlation as their
major axis. Moderately distant observations that are close to this axis
haw2 greater influence on the location estimator than those that are

closer but along the minor axis. Note also that the component x, of x

2

has an influence on the estimator ﬁl,the first component of u.

The influence function for the self-critical estimator § cannot be

~

written in simple form in general. For the p = 2 case we illustrate it

. . AT
in terms of the vector of estimators W = (¥

~

11,912,022) for the standard

bivariate normal distribution with correlation p. It may be shown that
2

[ (I+e)x,© - 1

IC@ % N,(0,R) = (1+c)? (re)xx, = 0 | exp(- S x'p

(1+c)x2 -1

o1
c = & for correlations ¢ = 0 and .9 in Figures 6a and b. In Figures

1 P
where P = [ J. We present contours of this function for éij with

7a and b we show contours of the influence function for the self-critical

estimator of P under the same conditions.

All the influence functions are bounded for c > 0 and are characterized by
closed contours. The closed contours indicate that the self-critical
procedure will be useful in clustering data. The clustering nature of
the estimation procedures explains why we were able to identify the
13 observations by the same individual in example 3.2. Jusat as in this

esample, the procedure will generally focus on the tightest cluster of

observations as the parameter ¢ is increased. The estimation procedure
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Figure 5
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Influence curve contours for the self-critical location
estimate, ﬁl. at the bivariate standard normal distribution
with correlation p = 0.9, c = ¥
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at the bivariate standard normal distribution, ¢ = & '
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may also be useful in classification problems, but we do not pursue the
subject here.

Devlin et al. (1975) present the influence functions for the maxi-~
mum likelihood estimator of P and a 5% trimmed estimator. Neither of
these influence functions are bounded, and the trimmed estimator is
unable to limit the influence of observations in certain regions of

the x space.
6. Monte Carlo Study

It has been long recognized that some alternative univariate esti-
mators such as the a~trimmed mean lose little efficiency for an exactly
normal parent but exhibit much better and more stable performance under
departures from it (Huber, 1972, for example). To evaluate the perform-
ance of the estimators of section 2 with ¢ > 0, a limited Monte Carlo
study was conducted. Simulated bivariate normal samples were used to
gauge losses in efficiency and slightly non-normal samples were used to
measure stability and performance. The performances of the usual vector
of sample means and covariance matrix, the vector of 10% (on each side)
trimmed means combined with a covariance matrix estimator employing 5%
(on each side) trimmed variances and the estimators {i and ¥ for several
values of ¢ are examined under several sampling gituations.

To study the performance of the selected estimators in sampling from
normal populations, 100 samples of size 20 from each of the bivariate
normal populations with W, - i, = 0, 0,%/0,% = 0.5, 1.0, 3.0 and p = 0.0,
0.5, 0.9, 0.99 were constructed. The same random number seed was used to

generate samples for all correlations and variance ratios.
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Tables of the Monte Carlo means and variances of the population
parameters estimated are presented in Table 4. In this and the other
tables of this section MEAN represents the sample mean vector or the
usual sample variances and correlations, TR. MEAN represents the 10%
on each side) vector of trimmed means or the 5% trimmed variances and
correlations and SC(%-),SC(%), SC(-;'-) represent the self-critical esti-
mators of section 2 with parameters c = %, %, -;- respectively. All
estimators provide reasonable estimates for location, but SC(%) and
TR. Mean have slightly inferior values vis-a-vis the other estimators.
The c =0 and c = % cases have the smallest variances. Comparisons of
the Monte Carlo means and variances for the variance ratio and corre-
lation yield similar conclusions. Note that the efficiencies computed
by dividing t'he ¢ = 0 variances by the ¢ > 0 variances are gensrally
good approximations to the values given in Table 3. An exception
occurs for c = %- for the estimator 8 of correlation. An analogous char-
acterization of the estimators is drawn if mean squared errors are used
instead of variances, but we do not present the results here.

To study stability of the estimators under slight departures from
a Gaussian parent, bivariate normal samples were constructed and con-
taminants of ona of two types waere added to the basic normal variates.
In the first case, one simulated bivariate Cauchy was added to standard

bivariate Gaussian samples of size 19. In the second case, a mixture of a

random number r of bivariate Gaussian variates divided by a uniform deviate
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and n - r bivariate Gaussian variate was constructed. The number r was
generated from a binomial distribution with parameters n = 20 and
probability .05. The parameters of the n - r bivariate Gaussian variates
were W, - U, =0, 0,%/0, = 1 and 3, and 0 = 0, .5, .9, .99. Table 5
depicts the Monte Carlo means and variances for each estimator, based on
25 samples generated from each population. The Monte Carlo means for
location, variance, and correlation show that the self-critical estimators
and the trimmed estimators retain their integrity with respect to the
basic underlying assumption of Gaussianity. This is, however, not as
important as the fact that this stability concerning the basic cluster
allows potential contaminants or model departures of various types to
be identified.

A range of experience with both real and simulated data corroborates

the above results. The estimators perform well in practice, especially

when used in the context of a sensitivity analysis.

LI
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7. Multivariate Regression

We now show that structured multivariate data, specifically a linear
model, may be naturally treated by the self-critical approach of section 2.

Let Yy Ygr eeer ¥ o be Nx1 vectors representing N independent observations
on each of p correlated random variables. We assume the model repre-

sentation
gj-§§j+gj ¢ 3=1,2,..., P (7.1)

where X is N*Xq and considered given, éj is gXl1 and unknown, and g-j is
an error or disturbance vector which is distributed as Np (Q,R). For

a single value of j, (7.1) is a univariate regression model. Define

!'(! XYqr ecoss )pU=(u,u,...,u),§-(B g,-..s)
wp)  + 2 " wea) 2 P (axp) ®

and then (7.1) may be written as

Y=fB+Q . | (7.2)

We wish to estimate D and E. Let Yi' X0 and v denote the row vectors
of ¥, X, and U of dimensions 1xp, 1xq, and lxp respectively. Since

9 = ¥; - %; B, the density of the y, is given by

- -k -1 T 7.3
£la,) = £(g,|0,0) = [2mD] om(-'s(xi-sie)g (¢, ~%;®) ) 7.3
The objective function to be maximized for B and D is, from section 2,

N |£€
g =1 )
c ¢

. (7.4)

-1
1=1| (ge@,pse) )/ 14




On differentiating with respect to B and D, setting the resulting ex-

pressions to 0, and solving we find that B and D satisfy the implicit

equations

-1
-l T
2 1§1~i 1 °"P( 7 (43~%B)D “(y;~x,B) )z x
. (7.5)

[~}

D = (l+c) Z w, (Y,~%, B) (y;~%,8)
i=]

£°(y,~%,8s 0,D)

y i=1,2,...,N. (7.7)

S g AR U PSR

Z £€ (g,~%,B: 0,D)
i=1

It is clear that if ¢ = 0, these equations reduce to the usual maximum

likelihood equations. For c > 0, the estimators are not equation-by-

equation univariate estimators since the covariance structure of D is now

allowed to play a role in the estimation process. It is interesting that,

from (7.5) to (7.7),

N T
I v ~1~1 g, = 2 L IR

W
n

T
i

1]

I3

i i

[
;rvuz
€

i=1

N N N '
T T, )1 T

I wzx - I ! X 5 Lwx'x Lwx 'y =0
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In the same manner ve have
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The equations (7.8) and (7.9) are weighted versions of the usual ortho-
gonality relations associated with the maximum likelihood or least
squares procedures.

This regression procedure with ¢ > 0 is useful in providing pro-
tection against difficulties in the Y values, for example Y outliers,
but is not especially useful if there are difficulties associated with
the factor space, for example, x outliers. This is easily seen by

rewriting (7.5) in terxms of the score function for B. This score

function is bounded and re-descending in the residuals Y, - % B but is

i

Thus a single bad X, value may ruin an entire

“

unbounded in the X, -
regression analysis. An extension of the approach we provide here will
be useful in dealing with this problem, but we do not pursue it here.
Belsley, Kuh and Welsch (1980) provide a nice discussion of the uni-
variate version of this problem.

For completeness, we provide an example in which we compare the
regression equations obtained by maximum likelihood and those obtained
from (7.5)-(7.7). 1It is found that the solutions are sensitive to the
change in c from O tol%-and thus there are some potential difficulties
with the data or the model or both. It is our job, having been fore-
warned, to find out where the difficulties might be. However, this is

not always possible.

Example 7.1: Data extracted from a study of the effects of a change
in environment on blood pressure is included in Ryan et al. (1976).

In this study, anthropologists measured the blood pressurs and other

characteristics of Peruvian Indian males over age 21, who had migrated

S

=Y




from primitive environments at high altitudes to modern lower altitude
areas of Peru. Previous studies in Africa suggested that such migra-
tions might increase blood pressure at first, but that the blood
pressure would tend to return to normal with time. The 39 observa-
tion=s included in this reference are listed in Table 6; the dependent
variables are systolic and diastolic blood pressure and the independent
variables chosen from those available are F, the fraction of life in
the new enviromment, W, the weight in kilograms, and S, a skin-fold
measure of general obesity.

We will consider the linear model containing the aforementioned
independent variables and a constant term. The MLE for the full model are
55.51 33.21
-28.41 -9.26 8 85.62 28.58

1.39 0.74 = ] 28.58  108.36
-0.26 0.001

A
B =
~

The order in the matrix of parameter estimates is constant, fraction of
life, weight, and obesity measure with the first column representing the
systolic blood pressure equation and the second column representing the

diastolic blood pressure equation. The self-critical estimates with

1
parameter ¢ = 2 e

58.59 34.91
-21.31 ~1.08
1.28 0.58
-0.24 0.22
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The parameter estimates obtained via the two methods are not
strikingly different. The only obvious difference is in the estimate
for the fraction of life term for both systolic and diastolic blood
pressure equations. Table 6 also includes the weight assigned to
each observatioh by the SC procedure. Observations 4 and 1 received
the lowest final weights, ﬁic. The 22-element of the covariance
matrix is quite sensitive to changes in the value of ¢ anc the resid-
uals of Table 6 confirm this.

The negative coefficients for the fraction of life in the new
environment support the results of the African studies, showing that
blood pressure decreases with the length of time in the new environ-
ment. However, it appears that there is less of a decrease in the
diastolic measurement than in the systolic measurement. As expected,
weight has the effect of increasing the blood pressure measures, but
it appears to have a greater effect on the systolic measurement.

The four term linear model ié not entirely appropriate since there
are still patterns in both the ¢ = 0 and ¢ = % residuals. In this case
examination of the ¢ = 0 residuals would have led to the two potential
problem points, 1 and 4, that the final weights G.

i,.25
for further scrutiny, but this will frequently not be the case.

have flagged

Our procedure may be directly applied to multivariate analysis of
variance. A generalized inverse may be used in place of the inverse of

(7.5) but a different, more direct, approach seems preferable.
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8. Discussion

We have presented a procedure for the analysis of multivariate normal
data which is‘at once very general and easy to use. We have successfully
used it in a variety of applications. It has proved to be helpful in the
identification of potential outliers and in the process of model evolution.
The procedure will tolerate large amounts (more than 100%) of contamination,
provided a significant portion of it is not all tightly concentrated in
a single area of p-dimensional space. This is of little consequence in
any event because the final weights will show a dramatic sensitivity to
changes in the index c and the source of the sensitivity should alwvays
be sought. The extent to which the index c may differ from zero is a
function of the dimension p and the sample size n. For example, if
P = 10 and n = 200, the procedure is likely to break down with ¢ > .15.

It is highly recommended that the procedure proposed be used in an

exploratory fashion.
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